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Abstract In this paper, we evaluate a number of machine learning techniques for the

task of ranking answers to why-questions. We use TF-IDF together with a set of 36 lin-

guistically motivated features that characterize questions and answers. We experiment

with a number of machine learning techniques (among which several classifiers and

regression techniques, Ranking SVM and SVMmap) in various settings. The purpose

of the experiments is to assess how the different machine learning approaches can cope

with our highly imbalanced binary relevance data, with and without hyperparameter

tuning. We find that with all machine learning techniques, we can obtain an MRR

score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower

than the best score of 0.35. We provide an in-depth analysis of the effect of data im-

balance and hyperparameter tuning, and we relate our findings to previous research on

Learning to Rank for Information Retrieval.

Keywords Learning to Rank · Question Answering · Why-Questions

1 Introduction

In the field of Question Answering (QA), abundant attention has been paid to questions

with factive answers such as factoids and definitions. For a long time, the problem of

why-questions was largely neglected by researchers in the QA field. The main reason

is that explanation-type questions are considered one of the most complex question

types [24] and they require a different treatment than questions with factive answers:

Answers to why-questions cannot be stated in a single phrase but they are passages of

text that contain some form of (possibly implicit) explanation [34].
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In previous work [36], we described a system for why-QA that consists of an off-

the-shelf passage retrieval engine (Lemur1), and a ranking module that uses a set of

features extracted from the question and each of the candidate answers. Until now, we

have mainly focused on improving the ranking performance of our system by adapting

and expanding the feature set used for ranking. This has led to a set of 37, mostly

linguistically motivated, features representing the degree of overlap between a question

and each of its candidate answers. We have experimented with a genetic algorithm and

with logistic regression for finding the optimal weights for combining the 37 features [35,

36].

In the current paper, we aim at finding the optimal ranking function for our feature

set to be applied in the ranking module to the set of candidate answers. We evaluate

a number of learning-to-rank techniques [22] in their ability of ranking the answers in

our data set. The problem of answering why-questions is of interest because the length

and the complexity of the answers make it an interesting case study for answer ranking

with the use of linguistically motivated features.

The problem of learning to rank has gained attention in the field of Information

Retrieval (IR) since 2005. It has been boosted by the ongoing development of the

LETOR benchmark data set [23]. Until now, most learning-to-rank research has been

directed at developing new techniques and evaluating them on the LETOR data col-

lections. This has resulted in a good understanding of the performance of a range of

ranking techniques for this specific data set. However, it is not yet known to what

extent their performances will change for other data sets. This paper is a step towards

understanding to what extent the results do generalize to other data and applications.

Learning-to-rank experiments are meaningful for applications that produce a ranked

list of items (documents, entities, answers, etc.) that are described by a set of features

and a class label according to which they can be ranked. In IR applications, the class

label refers to the item’s relevance. In the case of QA, relevance is generally defined

as a binary variable [39]. On the other hand, all operational QA systems still present

a ranked list of answer candidates for each individual input question [28]. For our

system for why-QA, we also use binary relevance labeling while aiming at a ranked

result list. Although we found that it is to some extent possible to label the answers

to why-questions on a multi-level relevance scale, we decided to treat answer relevance

as a binary variable (see Section 3.3). This means that our ranking function needs to

induce a ranked list from binary relevance judgments.2

A second challenge that we face in learning to rank our data is the imbalance

between positive and negative instances in the training set: There tend to be much

more incorrect than correct answers [33]. This is not unique for QA data (in document

retrieval, for example, the number of irrelevant documents is also much larger than

that of relevant ones) but we will see that this imbalance plays a role in ranking the

answers in our data collection.

In this paper, we evaluate the following techniques for the task of learning a ranking

for why-answers: Näıve Bayes, Support Vector Classification, Support Vector Regres-

sion, Logistic Regression, Ranking SVM, SVMmap and a Genetic Algorithm. Following

the learning-to-rank literature [22], we consider three different approaches to learning

to rank: (1) the so-called pointwise approach, in which candidate answers are classified

1 See http://www.lemurproject.org
2 In ranking binary relevance data, the goal is to rank the correct answers higher than

the incorrect answers. There is no evaluation of the ranking among the (in)correct answers
themselves.
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individually (over all questions), (2) the pairwise approach, in pairs of two candidate

answers to the same question are classified, and (3) the listwise approach, in which the

complete ranking of all candidate answers to the same question is optimized.

We will discuss the performance of each of these three approaches on our data while

evaluating the machine learning techniques mentioned above. Some of these techniques

require tuning of hyperparameters, others do not. We will pay special attention to

the effects of data imbalance and hyperparameter tuning in the performance of the

techniques.

In the remainder of this paper, we will use the term ‘answer cluster’ to refer to

the set of candidate answers to one question. We assume a set-up in which a list of

candidate answers is retrieved by a retrieval engine. Learning to rank is the task of

learning the optimal ranking for the answers within each cluster.

This paper is organized as follows: in Section 2, we discuss related work on QA

research, learning to rank and the problem of imbalanced data. In Section 3 we describe

the resources that we use for our experiments and we specify the characteristics of the

data used in our experiments. An overview of the experiments that we conducted is in

Section 4. The results are presented in Section 5, followed by a detailed discussion of

the results in Section 6. Section 7 contains our conclusions.

2 Related work

In Section 2.1, we give a summary of QA research, the role of why-questions in QA

and learning-to-rank experiments for the purpose of QA. In Section 2.2, we present a

brief overview of the learning-to-rank approaches in the literature. In Section 2.3, we

discuss the challenge of classifying imbalanced data, which is an important aspect of

our learning problem.

2.1 Question answering and the position of why-questions

QA research emerged in the field of Information Retrieval in the mid-1990s. From 1999

to 2007, the TREC-QA track3 has encouraged the development and evaluation of open-

domain QA systems, with the use of common evaluation measures. In the first years of

the TREC-QA track, different question types were included in one and the same task.

The 1999 QA track contained 200 questions, only two of which were why-questions;

all other questions were factoids (asking after who, where, how many, etc.) [37]. From

2002 onwards, why-questions were no longer included in the track’s main task [38].

According to the 2002 overview paper by Maybury [24], why-questions are one of the

most complex question types. This is mainly because the answers to why-questions are

not named entities (which are in general clearly identifiable), but text passages giving

a (possibly implicit) explanation [34]. Recently, research by Higashinaka and Isozaki

has been directed at developing and evaluating QA systems for answering Japanese

why-questions (why-QA) [17]. For English why-questions, we have in previous work

developed an approach that combines bag-of-words retrieval techniques with linguistic

and structural knowledge [36]. The current paper will continue this line of work with

learning-to-rank experiments for our set of structural and linguistic features.

3 See http://trec.nist.gov/data/qamain.html
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Until now, not much research has been directed at learning-to-rank experiments

for the purpose of optimizing QA systems. In 2004, Usunier et al. [33] are the first

to apply learning-to-rank techniques to QA data: they experiment with AdaBoost

and RankBoost on a set of 250 questions. Surdeanu et al. [29] adopted the Ranking

Perceptron approach of Shen and Joshi [28] for learning to rank in the context of a

large QA collection.

2.2 Learning to Rank approaches

Most approaches to learning to rank consider the problem as a case of supervised

learning. All instances (the items to be ranked) are assigned a (binary or ordinal)

score representing their relevance as determined by an independent judgment process;

this score is considered as the ground truth. In the training stage, a ranking function

is learned based on the set of feature vectors with their ground truth labels. In the

testing stage, the function is applied to new sets of items in order to generate a ranked

order. Learning a ranking function is not a trivial task. In [22], many approaches to

learning to rank are discussed.

Approaches to learning a ranking from a set of labeled instances can be divided

in three categories: (1) learning to classify the instances according to their (binary or

ordinal) label irrespective of the clustering of the answers4 (pointwise approach), (2)

classifying pairs of correct and incorrect answers for their mutual order and optimize

the proportion of correctly ordered pairs (pairwise approach), or (3) optimizing a cost

function for the ordering of answers within one answer cluster (listwise approach). In

the remainder of this section, we discuss the three approaches in more detail.

The pointwise approach

In the pointwise approach, the clustering of answers per question is ignored in the

training stage: The task of the classifier is to learn whether an instance should be

classified as relevant or irrelevant, irrespective of the answer cluster it belongs to.

Relations between the candidate answers to the same question are ignored. A ranked

answer list can then be induced by letting the classifier assign a score to each instance

in the test set, expressing the probability that it should be classified as relevant, and

then ordering the answers per question according to these scores (ordinal sort) [4].

Techniques that can be applied in this approach are classifiers (such as Näıve Bayes and

Support Vector Classification) and regression techniques (such as Logistic Regression

and Support Vector Regression) [9,16].

In the literature, the pointwise approach is considered the weakest of the three

learning-to-rank approaches, because it ignores the clustering of instances per query.

This especially leads to problems in situations where the number of answers varies

largely for different queries.5 Moreover, pointwise approaches do not take into account

the position of each answer in a ranked list. As a result of that, candidate answers that

4 We use the word ‘answers’ here because that is the type of data we are working with in
our QA experiments. In learning-to-rank experiments, ‘answers’ can be any type of items to
be ranked.

5 This type of imbalance was not relevant in our study since we ranked 150 answers for all
questions.
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are in the bottom part of the result list receive the same attention as the top-ranked can-

didates while they are relatively less important for the overall system performance [22].

The pairwise approach

An alternative way of learning a ranking for a list of answers is to classify pairs of

relevant and irrelevant answers within one cluster for their mutual order and opti-

mizing the proportion of correctly ordered answers. This learning principle is called

‘pairwise preference learning’, and was introduced by Joachims [21], who proposed the

learning algorithm Ranking SVM based on this principle. Other pairwise algorithms

are RankNet [4] and RankBoost [13]. Pairwise preference learning is studied in more

detail in [14] and is applied to several ranking problems such as combining rankings

from multiple retrieval systems in [6].

Pairwise approaches are considered more powerful than pointwise approaches be-

cause they consider pairs of instances from the same cluster and do not take into ac-

count unrelated instances (answers to other queries). Furthermore, pairwise approaches

tend to give better results on the LETOR benchmark data than pointwise approaches,

although the differences are small and not always significant [22].6

The listwise approach

The third, more recently developed approach to learning to rank answers is the listwise

approach, in which a cost function for the ordering of answers within one answer cluster

is optimized [40]. There are two subtypes of listwise approaches [22]. The first takes

into account the relevance labels of all instances within one cluster and optimizes the

instance order for an IR evaluation measure such as Mean Average Precision (MAP),

Mean Reciprocal Rank (MRR) or Normalized Discount Cumulative Gain (nDCG).

Examples of techniques that optimize for IR evaluation measures are SVMmap [43] and

AdaRank [41]. The second type of listwise learning (e.g. ListNet [5]) takes lists of ranked

items as training data, and optimizes for the difference between this ground truth

ranking and the hypothesized ranking. Listwise techniques are considered promising

because they already reach scores similar to or better than pairwise techniques while

they have been developed more recently [22].

In [35] we implemented a listwise ranking approach using a genetic algorithm that

optimizes answer ranking for MRR. Genetic algorithms have been applied to learning-

to-rank problems and other retrieval optimization problems by several researchers in

the field [32,42,31]. The ranking performance can be defined and implemented in the

so-called fitness function in different ways. In [11], a number of fitness functions that

are derived from ranking evaluation measures (such as MAP) are compared for their

effectiveness. The conclusion was that the best results are obtained when the algorithm

is optimized for the same measure as it is evaluated on.

2.3 The problem of imbalanced data

As mentioned in Section 1, class imbalance is a challenge in many learning-to-rank

tasks, also in ranking QA data [33]. This especially holds for pointwise techniques

6 All experimental results on the LETOR data can be downloaded from http://research.
microsoft.com/en-us/um/beijing/projects/letor/
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because the imbalance hampers the optimization process: If 98% of the instances in

the training set have been labeled irrelevant (or incorrect), then classifying all instances

as incorrect gives an accuracy of 98%.

This problem has been acknowledged by many researchers in the machine learning

field [20,33,1,30]. Because SVMs are very popular for all sorts of classification tasks,

much work on tackling the problem of imbalanced data is focused on making SVMs

robust to imbalance. In the literature, three solutions for curing problematic class

imbalances for classifiers are discussed: undersampling the majority class, oversampling

the minority class and cost-modifying according to the same ratio as the class balance.

In general, the latter approach gives the best results for various classifiers [20,30].

Class imbalance causes fewer problems for regression techniques than for classifiers.

In regression models, the so-called ‘intercept’ value moves the outcome of the regression

function towards the bias in the data. If the class imbalance is not too extreme, the

intercept can be adapted so that the regression function is robust against it [25].

Pairwise approaches are less sensitive to class imbalance than pointwise approaches.

The reason is that they classify pairs of correct and incorrect answers from the same

cluster, thereby balancing the training data. For listwise approaches, data imbalance

is not an issue since these techniques are not classification-based but they optimize for

instance order directly.

3 Data and system set-up

In this section, we present the background of our learning to rank task in terms of

the resources that we use for development and evaluation (3.1), the set-up of our QA

system (3.2), the ground truth labeling that we apply to the data (3.3) the features

that we extract from the data (3.4), and our evaluation set-up (3.5).

3.1 Resources

Our passage database is extracted from the Wikipedia INEX 2006 corpus [10]. This

corpus consists of all 659,388 articles extracted from the online Wikipedia in the sum-

mer of 2006, converted to XML format. Before indexing the corpus, we segmented

all Wikipedia articles into passages. We used a semi-fixed passage size of 500 to 600

characters (excluding all XML markup) with an overflow to 800 for the purpose of

completing sentences.7 We created passage overlap by starting each new passage at a

sentence boundary halfway the previous passage. For Wikipedia articles that contain

fewer than 500 characters in total, we included the complete text as one passage. Our

segmentation process produced an index of 6,365,890 passages. We separately saved

the document title and section heading as metadata for each passage because they were

used in our feature set.

For our question set, we exploited the Webclopedia question set by Hovy et al. [18].

This set contains questions that were asked to the online QA system answers.com. Of

these questions, 805 (5% of the total set) are why-questions. For development and

7 We assume that answer passages ending in an unfinished sentence are undesirable. How-
ever, if the hard maximum of 800 characters is reached, the passage is cut off between two
words to prevent non-sentence contexts like tables to result in extremely long passages.
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testing purposes, we needed a set of questions for which we knew that they had an an-

swer in the corpus. For 700 randomly selected why-questions from this set we therefore

searched for an answer in the Wikipedia XML corpus by manually formulating queries

and browsing through documents. Three examples illustrate the type of data we are

working with:

1. “Why do most cereals crackle when you add milk?” — “They are made of a sugary

rice mixture which is shaped into the form of rice kernels and toasted. These kernels

bubble and rise in a manner which forms very thin walls. When the cereal is exposed

to milk or juices, these walls tend to collapse suddenly, creating the famous ‘Snap,

crackle and pop’ sounds.”

2. “Why didn’t Socrates leave Athens after he was convicted?” — “Socrates consid-

ered it hypocrisy to escape the prison: he had knowingly agreed to live under the

city’s laws, and this meant the possibility of being judged guilty of crimes by a

large jury.”

3. “Why was cobalt named cobalt?” — “The word cobalt comes from the German

kobalt or kobold, meaning evil spirit, the metal being so called by miners, because it

was poisonous and troublesome (it polluted and degraded the other mined elements,

like nickel).”

For 186 of the 700 why-questions, we were able to find at least one correct the answer in

the Wikipedia corpus.8 Thus, our data collection consists of 186 why-questions. This is

not very large for machine learning experiments but comparable to the data collections

that are contained in the LETOR benchmark data set [27].

3.2 System set-up

Our system consists of three modules that are run in sequence:

1. A question processing module that transforms the input question to a query by

removing stop words and punctuation.

2. An off-the-shelf retrieval module that retrieves passages from the Wikipedia passage

database that share content with the input query. Here, we use Lemur to retrieve

1509 answer passages per question. The selection of these 150 passages was done

on the basis of the TF-IDF weighting scheme as it has been built in in Lemur [44].

This gives us a set of 186 questions with 150 candidate answers per question.

3. A ranking module that ranks the retrieved passages using features extracted from

the question and each of the 150 candidate answers (see Section 3.4 below): 27,900

(186 ∗ 150) question-answer pairs (instances) in total. One of the features that we

use is the TF-IDF score that was assigned to each candidate answer by Lemur.

8 Thus, about 25% of our questions have an answer in the Wikipedia corpus. For the majority
of the other questions (except for some questions that seem to be jokes rather than a serious
information need), the coverage of Wikipedia in 2006 appeared not to be sufficient. A detailed
analysis of Wikipedia’s shortcomings for our data is not in the scope of this paper.

9 We experimented with a higher number of answer candidates but coverage was hardly
improved when increasing this number to 500.
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3.3 Ground truth labeling

For training and testing machine learning techniques, each instance in the data has

to be assigned a label. In IR research, these labels are relevance assessments. In the

case of learning-to-rank experiments, researchers are often faced with large amounts

of data that need to be labeled: a relatively small set of 100 queries with 100 results

per query already gives a set of 10,000 instances. Since it is often too costly to label

all instances by hand, estimations of relevance are generally used instead of complete

manual judgments. These estimations can come from the aggregation of rankings by

multiple systems for the same data, or by cleverly sampling a number of instances per

cluster to find some that can be annotated as relevant; in this case all unannotated

instances are considered irrelevant. A number of aggregation and sampling options for

the estimation of relevance assessments are discussed in [2].

Thus, the large amounts of training instances force IR researchers to use estimations

instead of complete manual judgments for labeling the instances. Moreover, in the case

of why-QA, it is not possible to apply fully automatic ground truth labeling (which is

often applied for evaluation in factoid-QA) because the answer to a why-question can

have several textual variants. Therefore, we performed a form of sampling in which an

assessor judged answers for each question, starting with the answer that is ranked first

and stopping at the first correct answer found. We did this for several system settings,

which gave different rankings and therefore different samples of assessments.

Although it is possible to judge the quality of answers to why-questions on a multi-

level scale (ranging from partly relevant to highly relevant), we found that multi-level

judgments are very subjective. Therefore, we decided to use binary relevance assess-

ments: “Does this passage answer the question, or not?” Judgments by a second assessor

on a sample of the data showed that the annotation task was relatively difficult: the

two assessors agreed in 97% of the cases, but taking into account the chance agreement

we reached only a moderate κ value of 0.48 (due to the highly imbalanced data). Since

the second assessor only judged a sample of the data that had been annotated by the

first assessor, it was not sensible to try and reach consensus on these data with two

annotators. Therefore, we used the ground truth annotations of the first assessor.

Because we judged a sample of all instances, we supported our manual judgments

with a set of answer patterns similar to the answer patterns used in TREC: a regular

expression for each question that defines which answers should be labeled as correct.

With these answer patterns, we automatically labelled the unannotated instances: the

answers that matched the answer pattern were labelled ‘correct’, the others ‘incorrect’

(instead of considering all unlabeled instances as incorrect). For example, for question

2 above (“Why didn’t Socrates leave Athens after he was convicted?”), we developed

the following answer pattern after assessing a sample of the candidate answers in our

set: /(Socrates.* opportunity.* escape.* Athens.* considered.* hypocrisy | leave.* run.*

away.* community.* reputation)/. The pattern is based on two variants of the correct

answer that we found in the set of candidate answers.10

10 Note that the vertical bar separates the two alternative formulations.
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Table 1 Set of 37 features used in our ranking module

TF-IDF The score that is assigned to a candidate answer by
Lemur/TF-IDF in the retrieval module

14 Syntactic features Overlap between question and answer constituents (e.g. sub-
ject, verb, question focus)

14 WordNet expansion features Overlap between the WordNet synsets of question and an-
swer constituents

1 Cue phrase feature Overlap between candidate answer and a pre-defined set of
explanatory cue phrases

6 Document structure features Overlap between question (focus) words and document title
and section heading

1 WordNet Relatedness feature Relatedness between question and answer according to the
WordNet similarity tool [26]

3.4 Feature extraction

From earlier work [36], we compiled a set of 37 features that are summarized in Table

1. We syntactically parsed the questions with the Pelican parser11 and the candidate

answers with the Charniak parser [8]. Then we used a Perl script to extract all feature

values from the question, the answer candidate and both their parse trees.

Each feature represents the overlap between two bags of item tokens12: a bag of

question item tokens (for example: all question’s noun phrases, or the question’s main

verb) and a bag of answer item tokens (for example: all noun phrases in the answer,

or all main verbs in the answer). The value that is assigned to a feature is a function

of the overlap between these two bags. We used the following overlap function:

S(Q,A) =
QA +AQ

Q+A
, (1)

in which QA is the number of question item tokens that occur in the bag of answer

item tokens, AQ is the number of answer item tokens that occur in the bag of question

item tokens, and Q + A is the number of item tokens in both bags of items joined

together. So for instance, for the noun phrase overlap, QA is the number of noun

phrases in the question that also occur in the answer. AQ is then the number of noun

phrases in the answer that also occur in the question, and Q + A is the total number

of occurrences of any noun phrase in the question and any noun phrase in the answer.

The result is a value between 0 (none of the noun phrases in the question and the

answer overlap) and 1 (all noun phrases in the question are present in the answer and

the other way around).

Description of the features

Below we give a summary description of the 37 features that we used for ranking (cf.

Table 1).

– Syntactic features. These are features that describe the overlap between a syn-

tactically defined question part (such as subject, verb or direct object) and the

11 See http://lands.let.ru.nl/projects/pelican/
12 Note that a ‘bag’ consists of individual tokens, while a ‘set’ consists of types. This makes

our overlap measure different from the traditional overlap measures that calculate the overlap
between sets (e.g. the Jaccard index).
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answer passage or parts of the answer passage (e.g. matching the question’s verb to

all verbs in the answer). The syntactic features that deserve some extra attention

here, are the features related to question focus (e.g. overlap between the question

focus and the title of the answer document). In Verberne [36], we introduced the

term question focus in analogy to linguistically motivated approaches to factoid QA

for the topic of the question (“What is the question about?”). We defined three

rules for determining the focus of a why-question: If the subject is semantically

poor (people, human or a pronoun, 15% of why-questions), the question focus is

the (verbal or nominal) predicate: “Why do people sneeze?”. In case of etymology

questions (10% of why-questions), the focus is the subject complement of the pas-

sive sentence: “Why are chicken wings called Buffalo wings?”. In all other cases,

the focus is the syntactic subject of the question, e.g. “Why are flamingos pink?”.

These three rules cover all general domain why-questions, the majority category

(75%) being the latter [36].

– WordNet expansion features. For each of the syntactic overlap features, we included

an additional feature that describes the overlap between the WordNet synonym

set [12] of a syntactically defined question part and the answer. This allowed us to

investigate the importance of WordNet expansions for specific parts of the question,

instead of for all question words indistinguishably.

– Cue phrase feature. The cue phrase feature is the overlap between the bag of answer

words and a fixed set of words that suggest some kind of explanation. We found

the cue phrases in a way that is commonly used for finding answer templates: we

queried the key answer words to the one most frequent why-question on the web

(“blue sky rayleigh scattering” for “Why is the sky blue?”) to MSN’s Live Search13

and crawled the first 250 answer fragments that are retrieved by the engine. From

these, we manually extracted all phrases that introduce the explanation. This led

to 47 cue phrases such as because, as a result of, which explains why, etc.

– Document structure features. The six document structure features cover informa-

tion about the document context of a candidate answer passage, such as: the overlap

between the question and the title of the Wikipedia document, the overlap between

the question and the title of the section in which the candidate answer occurs, and

the relative position of the candidate answer in the document.

– WordNet Relatedness feature. We defined the relatedness between a question and

an answer as the average of the relatedness of each question word with all words

in the answer:

REL(Q,A) =

∑m
q=1

∑n
a=1REL(wq, wa)

m
(2)

in which Q,A is the question-answer pair under consideration, wq represents the

question words, wa the answer words, m is the number of question words, and n

is the number of answer words. As a measure of word relatedness (REL(wq, wa)),

we chose the Lesk measure, which finds overlaps between the glosses of two words,

also if they belong to different word classes [26]. We used the version of Lesk that

was adapted for WordNet by Banerjee and Pedersen [3].

13 See http://www.live.com
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Resulting feature vectors and normalization

Feature extraction led to a vector comprising 37 feature values for each of the 27,900

items in the data set. For feature value normalization, we performed a form of cluster-

wise normalization that is comparable to the approach by Liu et al. [23] (‘QueryLevel-

Norm’ in LETOR).

Assume a question Qi with the candidate answers Aj(j = 1..150). For each feature

Fk(k = 1..37), its value xijk is normalized by transforming it to its z-score:

x′ijk = (xijk − µik)/σik (3)

in which µik is the mean of all values of feature Fk for the candidate answers to Qi

and σik is the standard deviation of all values of feature Fk for the candidate answers

to Qi.

Normalizing feature values to a relative value within a cluster makes our data more

suitable for pointwise learning approaches. Moreover, this approach makes it possible

to normalize the scores independently of the answers to other questions: It can be

performed for the set of candidate answers to each new input question.

3.5 Evaluation set-up

Each instance in our data was labeled correct if the candidate answer was deemed a

correct answer to the question and incorrect if it was not (see Section 3.3). On average, a

why-question had 1.6 correct answers among the set of 150 candidate answers retrieved

by Lemur. This means that the incorrect/correct ratio in our data collection is 71 to

1 (98.6% of the instances in the training set was labeled incorrect). Akbani et al [1]

consider a data set to be ‘highly imbalanced’ for the use of classification techniques if

the ratio of negative against positive instances is bigger than 50 to 1.

For evaluation, we counted the questions in the test set that have at least one

correct answer in the top n (n ∈ 10, 150) of the results. This number divided by the

total number of questions in our test collection gave the measure Success@n. For

the highest ranked correct answer per question, we determined its reciprocal rank

(RR = 1/rank). If there was no correct answer retrieved by the system at n = 150,

the RR was 0. Over all questions, we calculated the mean RR (MRR).14

We performed 5-fold cross validation on the question set. We kept the 150 answers

to each question together in one fold so that we did not train and test on answers to

the same question. For techniques that require tuning of hyperparameters, we used a

development set (see Section 4.1). In the training stage, we excluded the 40 questions

(21.5%) for which none of the 150 candidate answers was correct. The test set on the

other hand did contain these questions, for which RR would naturally be 0.

14 MRR is a useful measure for query types that have only one correct answer. For factoid
questions, for example, retrieving multiple occurrences (or variants) of the same answer does
not provide the user with useful new information, so only the highest ranked correct answer
is counted in the evaluation. As we saw in our data set, why-questions have one or very few
correct answers, making MRR a suitable evaluation measure.
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Table 2 Overview of our data collection, and the set-up of evaluation and hyperparameter
tuning

Demographics of the data
Number of questions (and consequently answer clusters) in data 186
Number of candidate answers per question 150
Total number of instances 27,900
Number of features 37
Percentage of instances labeled as incorrect 98.6%
Evaluation set-up and hyperparameter tuning
Number of folds used in cross-validation 5
Mean number of questions per test set (1 fold) 37
Mean number of questions per training set (4 folds; successful questions only) 117
Number of questions per development set (held out of training data) 10
Number of development sets per training set 3

4 Experiments

In this section, we describe the machine learning techniques we evaluated and how we

applied each of them to our learning problem. In all cases, we used the 37-feature set

with clusterwise normalization that we described in Section 3.4. As a baseline, we used

the system setting in which the answers are retrieved and ranked according to TF-IDF

only.

An overview of our data collection, together with the set-up of evaluation and

hyperparameter tuning, can be found in Table 2.

4.1 Matrix of techniques

We compared the three learning-to-rank approaches introduced in Section 2.2: the

pointwise approach (see Section 4.2), the pairwise approach (Section 4.3) and the list-

wise approach (Section 4.4). In the pointwise approach, we evaluated the following

classification and regression techniques: Näıve Bayes, Support Vector Classification,

Support Vector Regression and Logistic Regression. In the pairwise approach, we eval-

uated the same classification and regression techniques, and Ranking SVM. For the

listwise approach, we evaluated SVMmap and a Genetic Algorithm that optimizes for

MRR.

Hyperparameter tuning

For techniques that require hyperparameter values, we not only evaluated the default

hyperparameter setting but we also tried to find optimal values for the hyperparameters

using a grid search over a large range of values (see Section 4.2 for a description of

the grid we used). For hyperparameter tuning, it is necessary to use development data

that is held out from the training set. We searched for hyperparameter values that give

the best results in terms of MRR on the development set. Given the small number

of questions in our training set,15 we decided to hold out 10 questions with their 150

answers from each training set. Because development sets of 10 questions are quite

small, we selected three (non-overlapping) development sets for each fold.

15 Around 117 because, as explained in Section 3.5, we excluded the 21% questions without
correct answers and 20% for each fold to test on.



13

As a further measure to prevent overfitting on the development sets (in order to

make the optimization process more robust), we selected three (near-)optimal hyper-

parameter settings for each development set, instead of simply taking the one leading

to the best MRR. The three hyperparameter settings were selected as follows: The first

was always the one leading to the best MRR on the development set. The second and

third were the highest local optima that are further than five steps in the grid away

from the first chosen point and from each other (see the descriptions of the used grids

in 4.2).

During testing, the outputs of the nine models that were created for the three

development sets (three models per development set) were combined by addition, after

scaling them to a comparable range.

4.2 The pointwise approach

We first investigated the pointwise approach of applying classification and regression

techniques to our learning problem. In the training phase, the classifier or regressor

learns to classify each instance (question answer pair) as either correct or incorrect,

irrespective of the cluster it belongs to.16 In the test phase, we let the model assign a

score to each instance in the data representing the likelihood that this instance should

be classified as correct. The actual ranking is done by a script that sorts the instances

per cluster by the output score of the classifier.

As discussed in Section 3.5, our data show a strong imbalance between positive and

negative instances, with a incorrect/correct ratio of 71. This may cause problems for

machine learning techniques that are designed for classification. Therefore, we applied

a balancing strategy to all classification and regression techniques that we evaluated.

As observed in the literature [20,30], applying a cost factor is the preferred approach

to counter imbalance. If a system did not allow for this, we applied oversampling of

the positive instances in such a way that each training set included approximately as

many positive as negative instances.

In the pointwise approach, we trained and tested each machine learning technique

both on the original (imbalanced) data and on the data that was balanced first (by

applying a cost factor or oversampling). For the classifiers that allow for hyperparam-

eter optimization, we performed the optimization for both these data variants. This

led to two (when hyperparameter optimization is not feasible) or four different settings

per machine learning technique: original default, original tuned, balanced default, and

balanced tuned.

Näıve Bayes classifier (NB)

For experiments with Näıve Bayes (NB), we used the e1071 package in R.17 This

package does not allow for tuning of hyperparameters for Näıve Bayes so we only ran

the Näıve Bayes classifier in its default setting, on both the original and the oversampled

data.

16 Recall that we did normalize the feature values per cluster, which made our data more
suitable for pointwise learning approaches.
17 See http://cran.r-project.org/web/packages/e1071/index.html
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Support Vector Classification (SVC) and Support Vector Regression (SVR)

For standard support vector methods, we used LIBSVM.18 As proposed by the authors

of LIBSVM , we first scaled our data using svm-scale. We experimented with support

vector classification (C-SVC) and support vector regression (ε-SVR). For both, we used

the RBF kernel [19].

The RBF kernel expects two hyperparameters: c — the trade-off between training

error and margin, and γ — a multiplication factor determining the range of kernel

space vector norms. Their default values are c = 1 and γ = 1/k with k being the

number of features, giving a γ of 0.027 for our data. For the grid search, we followed

the suggestion in [19] to use exponentially growing sequences of c and γ. We varied c

from 2−13 to 213 in steps of ×2 and γ from 2−13 to 27 in steps of ×4. 19

SVC allows us to use a cost factor for training errors on positive instances, which we

did: During hyperparameter tuning, we kept the cost factor unchanged at 71 (−w1 =

71). For SVR (which does not allow for a cost factor), we oversampled the positive

instances in the training sets.

Logistic regression (LRM)

We used the lrm function from the Design package in R for training and evaluat-

ing models based on logistic regression.20 LRM uses Maximum Likelihood Estimation

(MLE) as optimization function. We used ‘correct’ and ‘incorrect’ as target values in

the training phase. In the test phase, the regression function is applied to the instances

in the test set, predicting for each item the log odds that it should be categorized as

‘correct’.

LRM has a built-in option for data balancing (applying a weight vector to all

instances), of which we found that it has exactly the same effect on the data as over-

sampling the positive instances in the training set. The other hyperparameters in LRM

(a parameter for handling collinearity in stepwise approaches21 and a penalty param-

eter for data with many features and relatively few instances) are not relevant for our

data. Therefore, we refrained from hyperparameter tuning for LRM: We only trained

models using the default parameter settings for both the original and the balanced

data.

4.3 The pairwise approach

For the pairwise approach, we evaluated Joachim’s algorithm Ranking SVM [21]. In

addition, we evaluated the same classification and regression techniques as in the point-

wise approach. We made this possible by transforming our data into instance pairs that

can be handled by these techniques (as explained below).

18 See http://www.csie.ntu.edu.tw/~cjlin/libsvm
19 This means that each next value is 4 times as high as the previous, so we go from 2−13 to

2−11 to 2−9 etc.
20 See http://cran.r-project.org/web/packages/Design/index.html
21 We only built regression models that contained all features as predictors.
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Ranking SVM

We used version 6 of SVM light for our Ranking SVM experiments.22 Ranking SVM

considers the training data to be a set of instance pairs, each pair consisting of one

correct and one incorrect answer. On these instances, the system performs pairwise

preference learning [21]. The ranking order of a set of training instances is optimized

according to Kendall Tau:

τ =
(Nc −Nd)

(Nc +Nd)
(4)

in whichNc is the number of concordant item pairs (the two items are ordered correctly)

and Nd is the number of discordant item pairs (the two items are ordered incorrectly).

Similar to the other SVM techniques, we used the RBF kernel in Ranking SVM,

which takes both the hyperparameters c and γ. For both, the default value is 1. For

tuning these parameters, we searched over the same grid as for SVC.

Classification and regression techniques

To enable the use of other classifiers than Ranking SVM and regression techniques in

a pairwise approach, we transformed our data into a set of instance pairs, similarly to

the approach implemented by Joachims in Ranking SVM. We presented the answers in

pairs of one correct and one incorrect answer to the same question. We kept the number

of features constant (at 37), but we transformed each feature value to the difference

between the values of the two answers in the pair. In other words, we created feature

vectors consisting of 37 difference values.

In the training data, each instance pair is included twice: ‘correct minus incor-

rect’ with label ‘correctly ordered’ and ‘incorrect minus correct’ with label ‘incorrectly

ordered’. In the testing phase, we let the classifier assign to each instance pair the

probability that it is correctly ordered. Then we transform the data back to normal

answer instances by summing the scores for each answer i over all pairs [i, j] in which

i is ranked first.

We evaluated the same classifiers and regression techniques in the pairwise approach

as we evaluated for the pointwise approach: Näıve Bayes, Support Vector Classification,

Support Vector Regression and Logistic Regression. Although our implementation of

pairwise classification for SVC is conceptually equal to Ranking SVM, there are some

implementational differences (such as the use of LIBSVM vs. SVM light).23 We decided

to evaluate both so that we could maintain a link to previous work as well as get more

direct comparability with the other pairwise classification and regression methods.

4.4 The listwise approach

In the listwise approach there is no classification of instances or instance pairs; instead,

the ordering of an answer cluster as a whole is optimized. As explained in Section 2.2,

the implementation of listwise ranking approaches is a recent development and the

results obtained with these techniques are promising [43,41]. We evaluated two listwise

22 See http://svmlight.joachims.org
23 the default value for γ is 1/k in LIBSVM and 1 in SVM light



16

optimization algorithms: SVMmap, and our own implementation of a genetic algorithm

that optimizes the order of answers per question using MRR as fitness function.24

SVMmap

SVMmap is a freely available algorithm25 that takes clusters of instances with binary

relevance labels as input and optimizes the instance order within each cluster for Mean

Average Precision (MAP) [43]. Average precision is calculated as:

AP =

∑
j:Pj=1 Prec@j

rel
, (5)

in which j : Pj = 1 represents each position in the result list where a relevant result is

found, rel is the number of relevant documents and Prec@j is the precision at position

j. MAP is the mean AP over all queries in the data.

In SVMmap, we again used the RBF kernel. For tuning the parameters c and γ,

we searched over the same grid as for SVC.

Genetic algorithm (GA)

We used a Perl implementation of a genetic algorithm (GA) [15] for our experiments.26

Our aim when training the genetic algorithm was to find the optimal weight vector

for our feature vector of 37 feature values (a linear combination of feature values). As

weights, we used the integers 0 to 10. In terms of the genetic algorithm, each possible

weight vector is an individual.

In each run (‘generation’), the GA selects the configurations that give the highest

MRR on the training set (the ‘fittest individuals’) for crossover (‘mating’). By default,

the crossover rate is 0.95 and the mutation rate 0.05. For the selection of individuals,

we chose tournament selection, which is the most efficient strategy. We used uniform

crossover because the order of our features in the feature vector is not relevant. In our

experiments, we set the generation size to 500 and the number of generations to 50

based on the shape of the learning curve in earlier experiments on the same data.

We did not run a meta-level GA for tuning our GA, because implementing such a

procedure proved to be computationally prohibitive.

5 Results

The results that we obtained in terms of MRR are in Table 3. In addition to MRR,

we calculated success@150 and success@10 (not shown in Table 3). For all settings,

success@150 is 78.5% (This score does not change because there are no new answers

retrieved by the ranking module). Success@10 is around 56% for the best-scoring set-

tings (compared to 45% for the TF-IDF baseline). For some of the techniques, we also

calculated MAP. As expected, the figures for MAP closely resemble the results in terms

of MRR because the data contain only a small number of correct answers.

24 To our knowledge, there are no implementations of AdaRank and ListNet available for
download and to experiment with.
25 See http://projects.yisongyue.com/svmmap
26 See http://search.cpan.org/~aqumsieh/AI-Genetic-0.04
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Table 3 Results for the pointwise, pairwise and listwise approaches in terms of MRR. An
asterisk (*) on an MRR score indicates a statistically significant improvement (P < 0.01
according to the Wilcoxon Signed-Rank test) over the TF-IDF baseline. A dagger (†) indicates
that the MRR score is not significantly lower than the highest MRR score (0.35).

Pointwise approach
Technique Orig. default Orig. tuned Balanced default Balanced tuned
TF-IDF 0.25
NB 0.19 - 0.20 -
SVC 0.10 0.32*† 0.32*† 0.33*†
SVR 0.34*† 0.30* 0.33*† 0.32*†
LRM 0.34*† - 0.31* -

Pairwise approach
Technique Default Tuned
NB 0.32*† -
SVC 0.32*† 0.34*†
SVR 0.32*† 0.35*
LRM 0.31* -
Ranking SVM 0.13 0.33*†

Listwise approach
Technique Default Tuned
GA-MRR 0.32*† -
SVMmap 0.33*† 0.34*†

In addition to a comparison between different techniques, we present detailed results

for LRM in Table 4. We chose LRM for this because the MRR score is not significantly

lower than the optimal MRR, and it allows us to see which features made a significant

contribution to the ranking model and the coefficients that were assigned to them. For

a more detailed discussion of the significant features we refer to [36].

For significance testing, we used the Wilcoxon Signed-Rank test on paired reciprocal

ranks (RRs): Per question, we took the RR of the highest ranked correct answer in two

system settings. Then we made 186 pairs of RRs for these two settings and calculated

the Wilcoxon score over them.

The highest MRR score that we obtained is 0.35 (by SVR for pairwise classifica-

tion).27 We will call this the optimum in the remainder of this section.

5.1 Comparing pointwise, pairwise and listwise approaches

We obtained good results with techniques following either of the three approaches:

pointwise, pairwise and listwise. The results for the pairwise approach much resemble

the results for balanced data in the pointwise approach. This finding confirms the

results found by other researchers on LETOR data: pairwise approaches are in some

cases slightly better than pointwise approaches but pointwise approaches can reach

good results if the data are balanced and the hyperparameters are tuned properly.

For Näıve Bayes, however, the results for the pointwise and pairwise approaches

are very different. Here we see that presenting the problem as a pairwise classification

27 The 21% of questions without a correct answer in the top 150 all have an RR of 0; the MRR
for the successful questions only is 0.45. This is quite high considering the Success@10 score of
56%. A further investigation of the results shows us that this is because a large proportion of
successful questions has a correct answer at position 1 (Success@1 for all questions including
the unsuccessful questions is 24.2%).
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Table 4 Detailed results for LRM on original data in terms of MRR, MAP, Success@10,
Success@150, and the coefficients of the features that significantly contribute to the re-ranking
score (P < 0.05), ranked by their coefficient in LRM (representing their strength). Asterisks
on coefficients denote the level of significance for the feature: ** means P < 0.001, * means
0.001 < P < 0.01, no asterisk means 0.01 < P < 0.05.

Mean Reciprocal Rank (MRR) 0.34
Mean Average Precision(MAP) 0.32
Success@10 57.0%
Success@150 78.5%
Significant features Coefficient
TF-IDF 0.39**
Overlap between question focus synonyms and document title 0.25**
Overlap between question object synonyms and answer words 0.22
Overlap between question object and answer objects 0.18*
Overlap between question words and document title synonyms 0.17
Overlap between question verb synonyms and answer words 0.16
WordNet Relatedness 0.16*
Cue phrases 0.15*

problem is essential for Näıve Bayes to predict the data correctly. We suspect that this

is because the simplicity of the Näıve Bayes model, which is based on the probability

of each feature value given the class of the instance. When presenting the data in pairs,

we apply a form of bagging: Each positive answer is included in the data many times,

but each time as part of a different instance pair. As a result, all positive instance pairs

are different from each other and the algorithm has more more quasi-independent data

points available for learning to make the right decision for one answer. Not surprisingly,

the Näıve Bayes classifier depends on the availability of (quasi-)independent training

data for learning a proper classifier.

In the bottom part of Table 3, we see that both our listwise approaches (GA-MRR

and SVMmap) lead to scores that are not significantly lower than the optimum, but

also not higher than the results for the pointwise and pairwise techniques. From the

literature on listwise techniques one would expect a result that is better than the

pointwise and pairwise approaches. We speculate that the failure of our GA approach

to outperform pointwise and pairwise approaches is because the linear feature com-

bination with integer weights that we implemented in the Genetic Algorithm is not

sophisticated enough for learning the data properly. The results for SVMmap may

be suboptimal because the optimization is done on a different function (MAP) than

the evaluation measure (MRR). We (and others [22]) have found before that the best

results with listwise techniques are obtained with a loss function that optimally re-

sembles the evaluation measure. In that respect, it would be interesting to experiment

with the lesser known algorithm SVMmrr [7].

5.2 The effect of data imbalance

As pointed out in the machine learning literature (see Section 2.3), classifiers are in

general sensitive to data imbalance. Table 3 shows that especially pointwise SVC gives

very poor results in its default setting on our imbalanced data. If we balance the data,

SVC reaches good results with the default settings of LIBSVM. As opposed to SVC,

the results for Näıve Bayes are not improved by balancing the data.
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We find that for regression techniques (SVR and LRM), balancing the data by

oversampling or applying a cost factor leads to slightly (not significantly) lower MRR

scores. In Section 6.2 we provide an analysis of the regression models for the original

and balanced data.

5.3 The effect of hyperparameter tuning

The effects of hyperparameter tuning on the ability of a technique to model our data

varies much between the different techniques. The results for pointwise SVC show

that with optimal hyperparameter settings SVC is able to reach a good result, even

for the highly imbalanced data, on which the default settings performed very poorly.

Ranking SVM, for which the default settings also give a result below baseline, also

profits significantly from hyperparameter optimization (P < .0001).

On the other hand, for those settings where default hyperparameters already give

good results (most pointwise approaches on the balanced data and most pairwise ap-

proaches), we see that hyperparameter tuning does not lead to significantly better MRR

scores. The only exception is pairwise SVR with P = 0.01 according to Wilcoxon.

There is one setting where we even observe a significant (P = 0.0003) lower MRR

score after hyperparameter tuning compared to the default setting: pointwise SVR on

the original data. In Section 6.3, we will provide an analysis of the tuning process in

order to see if our experiments suffer from overfitting. Additionally, we will analyze the

differences between individual questions in Section 6.4.

6 Discussion

6.1 Relating our findings to previous work

Although our feature set is different from the feature sets that are used in previous

work on learning to rank for Information Retrieval, there are also similarities between

our data and more commonly used data in learning-to-rank research: in all data, the

instances are clustered by query, and there is often a strong imbalance between positive

and negative instances.

The performance differences that we find between pointwise, pairwise and listwise

approaches are small, especially after balancing the data. We argue that this is largely in

line with earlier findings in learning-to-rank for Information Retrieval, where differences

between the three approaches on smaller datasets are not always significant [22].

We can identify four distinct reasons why some of our findings are different from the

findings in the learning-to-rank literature. First of all, our data collection is relatively

small (186 questions), as a result of which it is difficult to get differences that are

statistically significant. The same pattern of listwise methods being not significantly

better than pairwise and pointwise methods can be observed for some of the smaller

LETOR collections such as OHSUMED, which contains only 106 queries [23].

Secondly, we performed clusterwise normalization on the data for all techniques.

As a result, the feature values of one candidate answer in the training set are related

to the feature values of other candidate answers to the same question. This gives

pointwise techniques ‘awareness’ of the clustering of the answers per question. Thirdly,

in hyperparameter tuning, we optimized for MRR on the development set. This means
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that all techniques profit from the advantage of optimizing for the measure that is used

for evaluation as well. Finally, the listwise techniques that we evaluated are suboptimal:

the genetic algorithm only performs a linear combination of feature values using integer

weights; SVMmap optimizes for a different measure than our main evaluation measure.

6.2 Analyzing the effect of data imbalance

In Section 5.2, we found that for regression techniques, balancing the data by oversam-

pling or applying a cost factor leads to slightly (not significantly) lower MRR scores. In

Section 2.3, we concluded from the literature that class imbalance causes fewer prob-

lems for regression techniques than for classifiers because in the regression model, the

intercept value moves the outcome of the regression function towards the bias in the

data.

An analysis of the regression models that were created by LRM for the original

and the balanced data showed that the model for the balanced data contains much

more significant effects (features that significantly contribute to the ranking model)

than the model for the original data. Due to oversampling the positive instances in the

training set, the regression function was strongly influenced by the heavy data points

that each represent 71 positive instances. Misclassifying some of the negative instances

during training does not influence the model fit too badly because there are much more

positive data points. However, when applying the model to generate a ranking, the few

negative instances that are misclassified are ranked above the positive instances. The

MRR, which only considers the positive instance that is ranked highest, has therefore

decreased.

6.3 Analyzing the effect of hyperparameter tuning

In Section 5.3, we reported that for those settings where default hyperparameters al-

ready give good results, hyperparameter tuning does not lead to better MRR scores. To

examine whether overfitting on the development sets was the cause of this, we analyzed

the results for one of the methods where a slight deterioration in MRR was observed

between default and tuned hyperparameter settings: pointwise SVR on balanced data.

For this setting, we plotted the measured MRR for every grid point for all tune and

test runs. We then compared the surfaces for corresponding tune and test runs.

In the ideal situation, the surfaces would not need to coincide, but at least the

highest peaks should be close to each other in the grid. Although this is the case for a

few runs, the typical situation is that in Figure 1, where the tune and test surfaces for

fold 4, development set A are shown. The grid area where the peak occurs in the tune

run has a lower than average MRR in the test run.

We also observe that the surfaces are not very smooth and sometimes show strong

local jumps. This means that for a determination of the real optimal hyperparame-

ters for each run, a denser grid would be preferable. However, seeing the mismatch

between the surfaces for tune and test runs, we expect that this would not solve the

problem of lower MRR scores after tuning. Thus, the process of hyperparameter tuning

is hampered by the sparseness of our data.

The large differences between the optimal hyperparameter values that are found

for different development sets shows that the optimal hyperparameter values are highly
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Fig. 1 The measured MRR for every grid point (parameters c and γ) for one tune run (left)
and the corresponding test run (right), on the same grid.

influenced by the individual questions in each development set. We conclude that for

tuning purposes, a development set size of ten questions is clearly too small. Our

strategy of using three development sets per training set has probably alleviated, but

certainly not solved this problem.

6.4 Analyzing the effect of ranking on individual questions

We analyze the effect of the learned ranking models on the level of individual questions.

Per question, we compare the results that are obtained by the TF-IDF baseline, and

each of the best performing 16 settings. We find that questions can be subdivided in

five categories according to the success that the baseline and the experimental settings

have on them. These categories are listed in Table 5, together with the percentage of

questions that fall in each category and an example question.

Categories 1 and 6 are the least interesting categories, because these questions

have a correct answer in the top-10 for either all or none of the settings (including the

baseline). We could refer to the questions from category 1 as the ‘easy’ questions in

our data, for which the TF-IDF baseline is already successful and additional ranking

features do not harm the ranking. For the questions in category 6, there is no correct

answer in the result list; consequently, no correct answer can be ranked in the top-10.

The questions in category 3 as the questions that are the most difficult to rank: there

is a correct answer available in the result list but none of the settings is able to rank it

into the top-10. Category 2 contains the questions where the learned ranking models

are successful while the TF-IDF baseline is not; for most of these questions, all ranking

models cause a correct answer to enter the top-10. These questions have a syntactic

and semantic structure that optimally fits the important ranking features, such as the

overlap between question focus and the title of the answer document in Wikipedia (e.g.

the Globe Theatre). The relatively small category 4 contains the questions for which
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Table 5 All questions in our data collection subdivided in categories according to the success
that the baseline and the 16 best experimental settings have on them. For each category, an
example question is given.

Questions answered in top-10 for... Example
1. all settings including baseline 37% Why are hush puppies called hush pup-

pies?
2. some settings excluding baseline 25% Why did the Globe Theatre burn down?
3. none of the settings 9% Why did Greek philosophy begin in Mile-

tus?
4. some settings including baseline 7% Why are there no white lines on pro foot-

balls?
5. TF-IDF baseline only 1% Why do men button from the right and

women from the left?
6. Questions with no correct answer 21% Why is English the language of the USA?

the ranking models have a mixed result: the TF-IDF baseline was able to rank a correct

answer in the top-10 but some of the other ranking models are not. Unfortunately, the

mixed results do no show a clear distinction between pointwise and pairwise techniques

or techniques that work on original or balanced data.

The very small category 5 contains the two questions for which applying the ad-

ditional ranking features causes the correct answer to drop out of the top-10. The

features that are the most important for the data as a whole have a counterproductive

effect on these questions (e.g. the subject men in the example question is bears very

little semantic content as opposed to the verb button — this is a non-standard pattern

in why-questions).

6.5 Computational issues

There is an additional factor in determining the best modeling method, apart from

performance measures: the computational cost. We should distinguish here between

the cost for training and the cost for actual application. The latter should not be of

major importance. Assuming a starting point of 150 potential answers, application of

a pointwise model, even with an RBF kernel, takes on average 0.8 seconds per question

(average over all potential hyperparameters for pointwise SVR, oversampled). This

time increases when using pairwise models that have a higher number of instances per

question. Still, this should not present a problem in most practical applications.

More serious considerations come into play when examining the training process,

especially for methods where hyperparameter tuning is needed. The optimal parameters

for the model will have to be determined, often in an iterative process, for every possible

hyperparameter grid point. For our dataset, pointwise SVR (oversampled) leads to

a total training time of 18 days on a 2.33GHz Intel Core 2 Duo, which means an

average training time per grid point of 350 seconds, ranging from 4.75 seconds for

c = 2048, γ = 32 up to 3.6 hours for c = 8192, γ = 0.5. For a practical application,

however, we would advise a much larger data set. This will inevitably increase the

training time, although the increase might be partly offset by a quicker convergence in

the optimalisation process due to a less sparse data set. On the other hand, the training

obviously needs to be done only once, and added quality might make it worthwhile,

despite the high training cost.
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7 Conclusion

In this paper, we have optimized the re-ranking module of a system for why-question

answering. The goal of this paper was to compare a number of machine learning tech-

niques in their performance on the task of learning a ranking for answers that are

described by TF-IDF and a set of 36 linguistically-motivated overlap features and a

binary label representing their correctness. We evaluated learning techniques in point-

wise, pairwise and listwise approaches.

We found that with all machine learning techniques, we can get to an MRR score

that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than

the best score of 0.35.

We are able to obtain good results with all three types of approaches for our data:

pointwise, pairwise and listwise. The optimum score was reached by Support Vector

Regression for the pairwise representation, but some of the pointwise settings reached

scores that were not significantly lower than this optimum. We argue that pointwise

approaches can reach good results for learning-to-rank problems if (a) data imbalance is

solved before training by applying a cost factor or oversampling the positive instances,

(b) feature value normalization is applied per answer cluster (query-level normalization)

and/or (c) proper hyperparameter tuning is performed.

We obtained reasonable results with two listwise techniques: SVMmap and a Ge-

netic Algorithm (GA) optimizing for MRR. With these techniques, we obtained results

that are comparable to those obtained with the pointwise and pairwise approaches.

Given our suboptimal choice of optimization function (SVMmap vs. SVMmrr) and

our relatively simple implementation with a linear combination of feature values in the

GA, we think that our results confirm the earlier findings that listwise approaches to

learning-to-rank are promising.

We found that for our imbalanced data set, some of the techniques with hyper-

parameters heavily depend on tuning. However, if we solve the class imbalance by

balancing our data or presenting the problem as a pairwise classification task then

the default hyperparameter values are well applicable to the data and tuning is less

important. The pairwise transformation enables even Näıve Bayes to classify and rank

the data properly. Since hyperparameter tuning is a process that takes much time and

computational power, a technique without hyperparameters, or a technique for which

tuning can be done easily without heavy computing, should be preferred if it reaches

equal performance to techniques with (more heavy) tuning. In this respect, regression

techniques seem the best option for our learning problem: logistic regression reaches

a score very close to the optimum (MRR is 0.34) without tuning. Pairwise support

vector regression reaches optimal performance (MRR is 0.35) with tuning.

It seems that with the current feature set we have reached a ceiling as far as individ-

ual rankers are concerned. We might still achieve an improvement with a combination

of rankers or second level classifiers, but the overlap between the results for individual

systems is such that this improvement can never be very big.28

28 In fact, we did some preliminary experiments with a linear combination of answer scores
from combinations of rankers. By use of a hill-climbing mechanism we were able to find a set of
weights that leads to an MRR on the test set of 0.38. This is significantly better than the best-
scoring individual technique (P = 0.03). We have not attempted second level classification,
since this would mean repeating all our experiments with a nested cross-validation in order to
do a proper training and tuning of the second level classifier.



24

Moreover, given the experimental result of 0.35 and the theoretical optimum of

0.79 (if for all questions with at least one correct answer a correct answer is ranked

at position 1), we can conclude that our features are suboptimal for distinguishing

correct from incorrect answers. Since we already invested much time in previous work

in finding the best features for describing our data, we conclude that the problem of

distinguishing correct and incorrect answers to why-questions is more complex than an

approach based on textual (overlap) features can solve.

Our future work will review the problem of answering why-questions in detail. In

automatically answering complex questions such as why-questions, human reasoning

and world knowledge seem to play an important role. We will investigate the limitations

of an Information Retrieval-based approach that relies on word overlap for complex

question answering.
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